
2020-07-03

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Break statements

2
Break statements

Outline

• In this lesson, we will:

– Introduce the concept of breaking out of a loop

– Modify a previous example to finish quicker

– Look at how to break out of nested loops

3
Break statements

Determining if an integer is prime

• Consider this program:
int main() {

 int n{};

 std::cout << "Enter an integer: ";

 std::cin >> n;

 bool is_prime{true};

 if (n%2 == 0) {

 is_prime = false;

 } else {

 for (int k{3}; k < n; k += 2) {

 if (n%k == 0) {

 is_prime = false;

 }

 }

 }

4
Break statements

Determining if an integer is prime

 if (is_prime) {

 std::cout << "The integer " << n << " is prime" << std::endl;

 } else {

 std::cout << "The integer " << n << " is not prime" << std::endl;

 }

 return 0;

}

2020-07-03

2

5
Break statements

Ending a loop early

• Suppose you test if 303 is prime:

303% 2 == 1

303% 3 == 0

303% 5 == 3

303% 7 == 2

303% 9 == 6

303% 11 == 6

303% 13 == 4

 ⋮

303%301 == 2

– After k = 3, we’re done; we know that 303 is not prime…

• So why test all other numbers?

6
Break statements

Ending a loop early

• The break statement allows us to terminate a loop:

– The loop immediate stops:

• The condition is not tested

• The update statement is not executed

– Execution jumps to the end of the loop and continues from there
 if (n%2 == 0) {

 is_prime = false;

 } else {

 for (int k{3}; k < n; k += 2) {

 if (n%k == 0) {

 is_prime = false;

 break;

 }

 }

 // Execution continues here...

 }

– This is useful, because once any number divides n,

 we no longer have to run any more tests

7
Break statements

Ending early if it is prime

• Now, given an integer n that is not prime, if n = m1m2 then either:

1. If n is a perfect square, it may be that ,

2. Otherwise, if , then

• For example,

• We see that, 420 = 2 × 210 = 3 × 140

 = 4 × 105 = 5 × 84

 = 6 × 70 = 7 × 60

 = 10 × 42 = 12 × 35

 = 14 × 30 = 15 × 28

 = 20 × 21

1 2m m n 

1m n 2m n

420 20.4939

8
Break statements

Ending early if it is prime

• Thus, an even better program is:
 if (n%2 == 0) {

 is_prime = false;

 } else {

 for (int k{3}; k < n; k += 2) {

 if (n%k == 0) {

 is_prime = false;

 break;

 }

 // ___

 // If k > \/ n and n%k == 0, then n/k < k, so we would

 // have already tested it. Thus, we only need to test

 // those k less than or equal to the square root of n.

 if (k*k > n) {

 break;

 }

 }

 // Execution continues here...

 }

2020-07-03

3

9
Break statements

Ending a loop early

• Consider the benefits:

– To test if a number around 1 000 000 is prime:

• Previously, we tested approximately 500 000 numbers

• Now we test at approximately 500

– To test if a number around 100 million is prime:

• Previously, we would have tested approximately 50 million numbers

• Now we test at approximately 5000

10
Break statements

Modifying the condition

• As a simple observation, we didn’t have to use a break statement,

 as both these conditions could have be added to the condition
 if (n%2 == 0) {

 is_prime = false;

 } else {

 // ___

 // Stop looping if we ever find is_prime == false or k > \/ n

 for (int k{3}; is_prime && (k*k <= n); k += 2) {

 if (n%k == 0) {

 is_prime = false;

 }

 }

 }

– Both work, both are acceptable approaches to solving this problem

11
Break statements

Integer square root

• The integer square root of n is the largest integer m such that

m2 ≤ n

• If n is a perfect square, then m2 = n and the integer square root is m

– For example, 102 = 100

• Otherwise, consider 99:

– 92 = 81 < 99 and 102 = 100 > 99,

 so the integer square root of 99 is 9

12
Break statements

Integer square root

• Consider this program:
int main() {

 int n{};

 std::cout << "Enter an integer: ";

 std::cin >> n;

 int isqrt{0};

 for (int m{1}; m < n; ++m) {

 if (m*m <= n) {

 isqrt = m;

 }

 }

 std::cout << "The integer square root of " << n << " is "

 << isqrt << std::endl;

 return 0;

}

2020-07-03

4

13
Break statements

Integer square root

• One problem with this program is that we test all integers up to and
including n – 1, even if the integer square root is much smaller…

 for (int m{1}; m < n; ++m) {

 if (m*m <= n) {

 isqrt = m;

 }

 }

• What happens if m*m <= n is false?

– This must mean that m*m > n, in which case we are finished

14
Break statements

Integer square root

• Thus, reducing our work significantly, our loop should loop like:

 for (int m{1}; m < n; ++m) {

 if (m*m <= n) {

 isqrt = m;

 } else {

 break;

 }

 }

15
Break statements

Finding a sum of squares

• Suppose we want to find if n is the sum of two non-zero squares:

– Is n = m1
2 + m2

2 for two non-zero integers m1 and m2?

– For many engineering problems, we only need to have one example

• Thus, once we find one pair of integers, we’re finished…

16
Break statements

Finding a sum of squares

• Consider this program:
int main() {

 int n{};

 std::cout << "Enter an integer: ";

 std::cin >> n;

 bool is_found{false};

 for (int m1{1}; m1 < n; ++m1) {

 for (int m2{1}; m2 < n; ++m2) {

 if ((m1*m1 + m2*m2) == n) {

 is_found = true;

 break;

 }

 }

 }

 // What are m1 and m2?

 return 0;

}

2020-07-03

5

17
Break statements

Finding a sum of squares

• Consider this program:
int main() {

 int n{};

 std::cout << "Enter an integer: ";

 std::cin >> n;

 bool is_found{false};

 int m1{};

 int m2{};

 for (m1 = 1; m1 < n; ++m1) {

 for (m2 = 1; m2 < n; ++m2) {

 if ((m1*m1 + m2*m2) == n) {

 is_found = true;

 break;

 }

 }

 }

18
Break statements

Finding a sum of squares

 if (is_found) {

 std::cout << n << " = " << m1 << "^2 + "

 << m2 << "^2" << std::endl;

 } else {

 std::cout << n << " is not the sum of two non-zero squares"

 << std::endl;

 }

 return 0;

}

19
Break statements

Finding a sum of squares

• We now try running our program:

Enter an integer:

121 is not the sum of two non-zero squares

Enter an integer:

122 = 122^2 + 122^2

121

122

20
Break statements

Finding a sum of squares

• The break only exits the inner loop
 for (m1 = 1; m1 < n; ++m1) {

 for (m2 = 1; m2 < n; ++m2) {

 if ((m1*m1 + m2*m2) == n) {

 is_found = true;

 break;

 }

 }

 // The break jumps to this point...

 }

m1 0

m2 0

is_found false

m1 1

m2 0

is_found false

m1 1

m2 1

is_found false

m1 1

m2 2

is_found false

m1 1

m2 3

is_found false

m1 1

m2 4

is_found false

m1 1

m2 11

is_found false

m1 1

m2 11

is_found true

m1 2

m2 11

is_found true

m1 122

m2 122

is_found true

m1 2

m2 1

is_found true

2020-07-03

6

21
Break statements

Finding a sum of squares

• Solution

– If we find a pair of integers that satisfies our condition, break out of
the outer loop, as well
 for (m1 = 1; m1 < n; ++m1) {

 for (m2 = m1; m2 < n; ++m2) {

 if ((m1*m1 + m2*m2) == n) {

 is_found = true;

 break; // exits the inner for loop

 }

 }

 if (is_found) {

 break; // exits the outer for loop

 }

 }

22
Break statements

Finding a sum of squares

• We now try running our program:

Enter an integer:

122 = 1^2 + 11^2

122

23
Break statements

Summary

• Following this lesson, you now

– Understand the purpose of a break statement

• It ends the execution of a for loop

– Know that the break statement is just break;

– Understand how to finish a loop early if there is no need to continue
executing the loop

• It only jumps out of the loop in which it is found

24
Break statements

References

[1] Wikipedia

 https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
[2] cplusplus.com

 http://www.cplusplus.com/doc/tutorial/control/

https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
https://en.wikipedia.org/wiki/Control_flow#Early_exit_from_loops
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/

2020-07-03

7

25
Break statements

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

26
Break statements

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

27
Break statements

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

